In many parts of Nigeria, wood remains a primary source of household and small-scale industrial energy. As fuelwood demand continues to grow, identifying species with high energy efficiency is increasingly important. This study evaluates eight commonly used wood species in Nasarawa State, Nigeria, to determine their suitability for fuelwood and charcoal production. Each species was assessed for calorific value, volatile matter, ash content, moisture content, wood density, and charcoal yield, using five replicates per species. Laboratory tests followed standard procedures, and the data were analyzed using descriptive statistics, ANOVA, and Duncan’s multiple range tests. Significant variation was observed across species, with Anogeissus leiocarpus, Khaya senegalensis, and Prosopis africana exhibiting superior energy profiles, including higher calorific values and lower ash and moisture contents. Boxplots and Duncan’s multiple range tests highlighted distinct groupings among the species. Correlation and multiple linear regression analyses revealed that moisture and ash contents had strong negative effects on calorific value, while density and charcoal yield positively influenced fuel quality. The results of regression analysis for calorific value versus volatile matter, ash content, moisture content, density, charcoal yield, species had R2 (Model Fit) of 0.8959, meaning 89.59% of the variation in calorific value is explained by the predictors. These findings support the hypothesis that fuelwood properties vary significantly by species and offer practical guidance for selecting efficient, clean-burning wood types. The results contribute to improved biomass energy use and support informed decisions for sustainable fuelwood utilization in sub-Saharan Africa.
| Published in | International Journal of Sustainable and Green Energy (Volume 14, Issue 4) |
| DOI | 10.11648/j.ijsge.20251404.11 |
| Page(s) | 234-249 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Fuelwood, Calorific Value, Wood Density, Charcoal Yield, Bioenergy
No | Scientific Name | Common Name | Calorific Value (MJ/kg) | Wood Density (kg/m³) | Moisture Content (%) | Ash Content (%) | Volatile Matter (%) | Charcoal Yield (%) | Combustion Rating | Use Suitability | Charcoal quality | Source |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Anogeissus leiocarpus | African birch | 18.2-19.5 | 780-850 | 11-13% | 1.1 - 1.8 | 72 - 78 | 30-34 | Fast | CCF | widely used for charcoal | [12 , 13] |
2 | Prosopis africana | Iron tree | 19.6-20.4 | 850-950 | 10-12% | 0.7 - 1.5 | 65 - 70 | 35-38 | Moderate | CCF | high yield, dense wood | [12 , 13] |
3 | Vitellaria paradoxa | Shea butter | 19.1-19.8 | 800-880 | 10-13% | 1.2 - 1.9 | 68 - 74 | 30-33 | Slow | CCF | Local combustion tests | [12, 13] |
4 | Parkia biglobosa | Locust bean | 17.6-18.3 | 600-700 | 12-14% | 1.0 - 2.0 | 70 - 76 | 28-31 | Moderate | CCF | Medium yield, dense wood | [12 , 13] |
5 | Khaya senegalensis | African Mahogany | 18.0-19.0 | 620-740 | 11-13% | 0.9 - 1.5 | 66 - 72 | 30-34 | Fast | CCF | Medium yield, dense wood | [14, 15] |
6 | Daniellia oliveri | Copal tree | 18.2-18.9 | 550-620 | 13-15% | 1.4 - 2.1 | 70 - 75 | 26-29 | Fast | CCF | Softwood, lower density | [12, 15] |
7 | Albizia zygia | Albizia | 17.9-18.5 | 510-580 | 12-14% | 1.1 - 1.7 | 71 - 77 | 25-28 | Moderate | CCF | Lower yield due to low density | [12, 14, 15] |
8 | Terminalia avicennioides | Black combretum | 18.3-19.1 | 750-800 | 10-12% | 1.3 - 2.0 | 67 - 73 | 30-32 | Slow | CCF | Moderate, widely used for charcoal | [12, 14] |
9 | Diospyros mespiliformis | African ebony | 19.0-20.0 | 850-980 | 9-11% | 1.0 - 1.4 | 60 - 66 | 33-36 | Moderate | CCF | High charcoal yield, hard wood | [12, 14, 15] |
10 | Azadirachta indica | Neem | 18.0-18.8 | 560-650 | 10-12% | 1.5 - 2.2 | 68 - 73 | 28-30 | Fast | CCF | Lower due to volatile oils | [12, 14, 15] |
11 | Mangifera indica | Mango | 17.5-18.6 | 540-610 | 10-12% | 1.3 - 2.0 | 72 - 78 | 26-29 | Fast | CCF | Low-medium yield, softwood | [12, 14, 15] |
12 | Afzelia africana | Apa | 18.6-19.4 | 700-830 | 11-13% | 0.8 - 1.3 | 60 - 66 | 33-36 | Moderate | CCF | High yield, hard and dense wood | [12, 14, 15] |
13 | Gmelina arborea | Gmelina | 17.0-17.8 | 400-500 | 12-15% | 2.0 - 3.5 | 74 - 80 | 24-27 | Slow | CCF | Fast-growing, low density | [12, 14, 15] |
14 | Tectona grandis | Teak | 18.5-19.5 | 630-690 | 10-12% | 1.4 - 2.1 | 62 - 68 | 29-32 | Moderate | CCF | Good charcoal quality, moderate yield | [12, 14, 15] |
15 | Alstonia boonei | Cheese wood | 17.1-17.6 | 360-450 | 13-15% | 1.6 - 2.4 | 73 - 78 | 22-25 | Fast | CCF | Low yield, low density, lightweight | [12, 15] |
16 | Ficus spp. | Fig tree (various) | 17.0-18.0 | 350-450 | 12-14% | 2.0 - 3.0 | 75 - 82 | 20-24 | Fast | CCF | Very soft, not ideal for charcoal | [12] |
17 | Isoberlinia doka | Doka tree | 18.2-18.9 | 700-800 | 11-13% | 1.1 - 1.9 | 65 - 70 | 30-33 | Moderate | CCF | Good yield, preferred fuelwood | [12, 14, 15] |
18 | Lophira lanceolata | Iron wood | 19.1-20.2 | 880-980 | 9-11% | 0.9 - 1.6 | 58 - 64 | 33-36 | Slow | CCF | Very hard, high carbon content | [12, 15] |
19 | Terminalia superba | White afara | 18.0-18.8 | 460-560 | 10-12% | 1.3 - 2.2 | 70 - 75 | 27-30 | Moderate | CCF | Medium-light density, moderate yield | [12, 15] |
20 | Triplochiton scleroxylon | Obeche | 17.8-18.4 | 350-500 | 11-13% | 2.0 - 3.5 | 73 - 79 | 24-27 | Fast | CCF | Lightwood, lower charcoal potential | [12, 14, 15] |
21 | Spondias mombin | Hog plum | 17.5-18.2 | 450-500 | 12-14% | 1.8 - 2.6 | 72 - 78 | 22-25 | Fast | CCF | Lightwood, low density, not ideal for charcoal | [12, 14, 15] |
22 | Pterocarpus erinaceus | African rosewood | 18.8-20.0 | 800-900 | 10-12% | 0.9 - 1.4 | 60 - 66 | 34-38 | Moderate | CCF | Very good charcoal wood, dense and oily | [12, 14, 15] |
23 | Nauclea latifolia | African peach | 17.0-17.8 | 600-650 | 12-15% | 1.5 - 2.4 | 74 - 79 | 26-29 | Slow | CCF | Medium density, fair combustion | [12, 14, 15] |
24 | Acacia nilotica | Egyptian thorn | 18.9-19.6 | 770-880 | 9-11% | 1.1 - 1.7 | 63 - 68 | 31-34 | Moderate | CCF | Dense hardwood, good for charcoal | [12, 15] |
25 | Faidherbia albida | Apple-ring Acacia | 18.0-19.1 | 600-750 | 10-12% | 1.2 - 2.1 | 67 - 73 | 28-32 | Fast | CCF | Medium-high yield, also nitrogen fixing | [12, 14, 15] |
26 | Brachystegia eurycoma | False Copalwood | 18.5-19.3 | 750-850 | 11-13% | 1.0 - 1.8 | 65 - 71 | 32-35 | Fast | CCF | Hardwood, good combustion | [12, 14, 15] |
27 | Hymenocardia acida | Hymenocardia | 17.6-18.4 | 550-600 | 12-14% | 1.3 - 2.2 | 70 - 76 | 26-29 | Moderate | CCF | Moderate yield, brittle structure | [12, 14, 15] |
28 | Celtis integrifolia | African hackberry | 17.2-18.0 | 540-580 | 11-13% | 1.0 - 1.6 | 71 - 76 | 27-30 | Slow | CCF | Medium yield, moderate combustion | [12, 14, 15] |
29 | Ceiba pentandra | Kapok Tree | 16.8-17.5 | 290-350 | 12-16% | 2.5 - 3.8 | 74 - 81 | 18-22 | Moderate | CCF | Very soft, low charcoal yield | [12, 14, 15] |
30 | Eucalyptus camaldulensis | Red River Gum | 18.4-19.5 | 700-850 | 9-11% | 1.5 - 2.5 | 69 - 74 | 30-34 | Fast | CCF | Fast-growing, good yield when seasoned properly | [12, 14, 15] |
31 | Aningeria robusta | Aningeria | 18.1-18.9 | 540-600 | 10-12% | 1.3 - 2.0 | 67 - 73 | 28-32 | Fast | CCF | Medium-density; decent yield | [12, 14, 15] |
32 | Mitragyna inermis | Mitragyna | 17.4-18.2 | 500-580 | 11-13% | 1.4 - 2.3 | 70 - 75 | 25-2 | Moderate | CCF | Light-to-medium wood; moderate yield | [12, 14, 15] |
33 | Detarium microcarpum | Tallow Tree / Sweet Detar | 18.2-19.0 | 780-900 | 10-12% | 1.2 - 2.1 | 62 - 68 | 33-36 | Slow | CCF | Dense wood, excellent yield | [12, 14, 15] |
34 | Sterculia setigera | Sterculia | 17.3-18.1 | 350-420 | 12-14% | 2.0 - 3.2 | 71 - 77 | 22-26 | Moderate | CCF | Low-density wood; poor to fair yield | [12, 14, 15] |
35 | Ziziphus mauritiana | Jujube / Indian jujube | 18.0-18.8 | 670-750 | 11-13% | 1.5 - 2.2 | 66 - 72 | 30-34 | Fast | CCF | Dense firewood and charcoal value | [12, 14, 15] |
36 | Grewia mollis | Velvet bushwillow | 17.0-17.8 | 500-580 | 12-14% | 1.6 - 2.4 | 68 - 73 | 25-28 | Fast | CCF | Moderate density; fair yield | [12, 14, 15] |
37 | Syzygium guineense | Water berry | 18.0-19.2 | 550-640 | 10-12% | 1.7 - 2.6 | 72 - 78 | 27-31 | Moderate | CCF | Moderate to high yield (depending on MC) | [12, 14, 15] |
38 | Ficus platyphylla | Broad-leaved fig | 17.6-18.3 | 360-420 | 12-14% | 2.1 - 3.0 | 74 - 80 | 20-24 | Slow | CCF | Softwood, poor charcoal yield | [12, 14, 15] |
39 | Terminalia macroptera | Terminalia | 18.1-18.9 | 600-680 | 11-13% | 1.2 - 2.0 | 69 - 74 | 30-33 | Moderate | CCF | Medium to high yield; efficient under dry conditions | [12, 15] |
40 | Piliostigma thonningii | Camel’s Foot Tree | 17.2-18.0 | 450-500 | 12-14% | 1.8 - 2.5 | 70 - 76 | 23-26 | Fast | CCF | Low to medium wood density; moderate yield | [12, 14, 15] |
41 | Lannea microcarpa | African grape | 17.6-18.3 | 550-620 | 11-13% | 1.4 - 2.2 | 70 - 75 | 28-32 | Fast | CCF | Moderately dense; good charcoal performance | [12, 14, 15] |
42 | Bauhinia rufescens | Bauhinia | 17.3-18.0 | 500-580 | 10-12% | 1.5 - 2.3 | 69 - 74 | 24-27 | Moderate | CCF | Medium wood, moderate yield | [12, 14, 15] |
43 | Cassia sieberiana | Drumstick Tree | 17.4-18.2 | 510-580 | 12-14% | 1.6 - 2.4 | 71 - 76 | 25-28 | Slow | CCF | Light-to-medium wood; fair charcoal quality | [12, 14, 15] |
44 | Pseudocedrela kotschyi | Dry-zone Cedar | 18.7-19.5 | 550-630 | 10-12% | 1.3 - 2.1 | 66 - 72 | 30-34 | Moderate | CCF | Hard wood, dense; high charcoal efficiency | [12, 14, 15] |
45 | Anthocleista nobilis | Cabbage Tree | 16.8-17.6 | 420-500 | 12-14% | 1.7 - 2.8 | 73 - 78 | 22-25 | Fast | CCF | Softwood, low density, poor charcoal quality | [12, 14, 15] |
46 | Uapaca togoensis | False Mahogany | 18.0-18.7 | 600-680 | 11-13% | 1.6 - 2.5 | 68 - 74 | 24-27 | Fast | CCF | Moderate density, fair yield | [12, 14, 15] |
47 | Cola nitida | Kola Nut Tree | 17.2-18.0 | 510-580 | 10-12% | 1.8 - 2.9 | 67 - 72 | 26-29 | Moderate | CCF | Fair yield; | [12, 14, 15] |
48 | Irvingia gabonensis | Bush Mango | 18.5-19.3 | 640-750 | 11-13% | 1.2 - 2.0 | 65 - 70 | 29-33 | Slow | CCF | Dense wood; good fuel properties | [12, 14, 15] |
49 | Treculia africana | African Breadfruit | 17.0-17.8 | 430-500 | 12-14% | 1.5 - 2.3 | 74 - 79 | 23-26 | Moderate | CCF | Soft to moderate; moderate yield | [12, 14, 15] |
50 | Entada africana | Twisted Entada | 17.1-17.9 | 520-600 | 11-13% | 1.3 - 2.2 | 72 - 77 | 25-28 | Fast | CCF | medium yield | [12, 14, 15] |
Predictor Variable | Coefficient (β) | Std. Error | t-value | p-value | R2 |
|---|---|---|---|---|---|
Moisture Content (%) | -0.314 | 0.038 | -8.263 | 0.001 | 0.755 |
Volatile Matter (%) | +0.042 | 0.059 | 0.712 | 0.489 | 0.825 |
Ash Content (%) | -0.272 | 0.038 | -7.157 | 0.001 | 0.705 |
Density (kg/m³) | +0.016 | 0.005 | 3.198 | 0.015 | 0.691 |
Charcoal Yield (%) | +0.128 | 0.031 | 4.132 | 0.004 | 0.842 |
Dependent Variable | Significant Predictors | R2 | p-value |
|---|---|---|---|
Volatile Matter (%) | Ash Content (+), Density (-) | 0.755 | 0.01 |
Ash Content (%) | Moisture (-), Volatile Matter (+) | 0.825 | 0.01 |
Moisture Content (%) | Ash Content (+), Charcoal Yield (-) | 0.705 | 0.01 |
Density (kg/m³) | Volatile Matter (-), Charcoal Yield (+) | 0.691 | 0.05 |
Charcoal Yield (%) | Ash Content (-), Moisture (-), Density (+) | 0.842 | 0.01 |
ANOVA | Analysis of Variance |
ASTM | American Society for Testing and Materials |
DMRT | Duncan’s Multiple Range Test |
FRIN | Forestry Research Institute of Nigeria |
| [1] | Energy Commission of Nigeria (ECN) (2014) Draft National Renewable Energy & Energy Efficiency Policy, Abuja, Nigeria, pp 1-47. |
| [2] | Njenga, M., Sears, R. R., & Mendum, R. (2023). Sustainable woodfuel systems: a theory of change for sub-Saharan Africa. Environ. Res. Commun. 5 051003 |
| [3] | Jagger, P., and Shively, G. (2017). Land use change, fuel use and respiratory health in Uganda. Energy Pol. 67, 713-726. |
| [4] | Guta, D. D. (2018). Effect of fuelwood scarcity and socio-economic factors on household biobased energy use and energy substitution in rural Ethiopia. Energy Pol. 75, 217-227. |
| [5] | Ajayi, B. & Olorunnisola, A. O. (2013). Evaluation of fuelwood properties of some tropical hardwood species. Biomass and Bioenergy, 58, 292-297. |
| [6] | Ruiz-Aquino, F., Ruiz-Ángel, S., Feria-Reyes, R., Santiago-García, W., Suárez-Mota, M. E., & Rutiaga-Quiñones, J. G. (2019). Wood Chemical Composition of Five Tree Species from Oaxaca, Mexico. BioResources, 14(4). |
| [7] | Cardoso, M. B., Ladio, A. H., & Lozada, M. (2012). The use of firewood in a Mapuche community in a semi-arid region of Patagonia, Argentina. Biomass and bioenergy, 46, 155-164. |
| [8] | Evbuomwan, B. O., & Okorji, C. J. (2018). Determination of the Fuel Wood Properties of Selected Nigerian Wood Trees. GSJ, 6, 1019-1033. |
| [9] | Egbewole Z. T, Rotowa O. J, Falade L. O., Kuje E. D., Mairafi H., Zachariah H. A and Olagunju O. J (2021). Impact of Anthropogenic Activities on Agudu Forest Reserve in Lafia Local Government Area, Nasarawa State. Proceedings of the 64th Annual Conference of Association of Deans of Agriculture in Nigeria Universities (ADAN), Keffi 2021. |
| [10] | FAO (2020). Woodfuel Handbook. Food and Agriculture Organization of the United Nations, Rome. |
| [11] | Jayeoba, O. J., Amana, S. M., & Ogbe, V. B. (2013). Spatial Variation of Soil Moisture Content and Total Porosity As Influenced by Land Use Types in Lafia, North Central Nigeria. PAT, 10(1), 53-66. |
| [12] | FRIN (2014). National Tropical Forestry Data Centre, Nigerian Tree Species. Forestry Research Institute of Nigeria. |
| [13] | ICRAF (2012). Wood Energy Potential of Agroforestry Species in Africa. International Tropical Timber Organization (ITTO) species sheets. |
| [14] | FAO (2018). Criteria and Indicators for Sustainable Woodfuels. FAO Forestry Paper 160. Food and Agriculture Organization of the United Nations, Rome. |
| [15] |
Orwa, C. (2009). Agroforestree Database: a tree reference and selection guide, version 4.0.
http://www.Worldagroforestry.org/sites/treedbs/treedatabases.asp |
| [16] | American Society for Testing and Material (2016) ASTM D4442-16 Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials (West Conshohocken: ASTM International). |
| [17] | American Society for Testing and Material. (2013). Standard Test Method for Gross Calorific Value of Coal and Coke (ASTM D5865-13). West Conshohocken, PA: ASTM International. |
| [18] | American Society for Testing and Material (2011). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels (ASTM D3175-11). West Conshohocken, PA: ASTM International. |
| [19] | American Society for Testing and Material. (2017). Standard Test Method for Ash in Wood (ASTM D1102-84). West Conshohocken, PA: ASTM International. |
| [20] | Akindele S. O. (2004): Basic designs in agricultural research. Publ. Royal Bird Ventures, Mushin Lagos Nigeria. ISBN 978-32973-8-4. pp 136-153. |
| [21] | Adesoye P. O. (2004): Practical guide to Statistical analysis for scientists. Publ. DEBO PRINTS ISBN 978-37965-0-X. p 108-112. |
| [22] | Egbewole, Z. T. (2017): Application of Tree Growth Models for Inventory of Plantation-grown Tectona grandis (Linn. f.) in Agudu Forest Reserve, Nasarawa State, Nigeria. International Journal of Applied Research and Technology. 6(8): 91-100. |
| [23] | Food and Agriculture Organization (FAO). (2017). Woodfuel Production and Trade in Africa: FAO Forestry Paper 159. Rome: FAO. |
| [24] | Adegoke I. A, Rotowa O. J, Adegoke, O. A (2020) Assessment of Bio-Fuel Characteristics of Bio-Oil Produced From Sawdust of Cordia Milenii and Nesogordonia Papaverifera Wood Species, Open Access Journal of Chemistry, 4(1), 2020, pp. 26-38. |
| [25] | Adegoke, I. A., and James, R. O. (2020). Preparation and Characterisation of Bio-Oil Produced from Sawdust of Selected Wood Species. American Journal of Modern Energy, 6(1), 16-25. |
| [26] | Bailis, R., Drigo, R., Ghilardi, A., & Masera, O. (2015). The carbon footprint of traditional woodfuels. Nature Climate Change, 5, 266-272. |
| [27] | Bonjour, S., et al. (2013). Solid fuel use for household cooking: Country and regional estimates for 1980-2010. Environmental Health Perspectives, 121(7), 784-790. |
| [28] | Rotowa O. J and Egbewole Z. T (2021): Production and Utilization of Briquettes and Improved Cooking Stoves as Alternatives to Sustainable Biomass. 17th Annual Meeting of the Northern European Network for Wood Science and Engineering (WSE 2021). |
| [29] | Amoah, M., & Cremer, T. (2017). Net calorific values and mineral concentration of thirteen tree and shrub species in Ghana. Journal of sustainable forestry, 36(7), 703-716. |
| [30] | Antwi-Boasiako, C., & Glalah, M. (2021). Physico-combustion characteristics and suitability of six carbonized tropical hardwoods as biofuels for domestic and industrial applications. Biomass and Bioenergy, 153, 106208. |
| [31] | Owonubi, J. J., Ezealor, A. U., & Tanko, A. B. (2015). Physical and combustion characteristics of selected savannah wood species in Nigeria. Nigerian Journal of Renewable Energy, 22(2), 43-50. |
| [32] | Akachuku, A. E., & Iyamabo, D. E. (1991). Wood density and fuel characteristics of savannah tree species in Nigeria. Forest Ecology and Management, 41(1-2), 177-185. |
| [33] | Aina, T. S., Adejumo, A. A., & Obasola, O. O. (2021). Charcoal production and calorific assessment of common fuelwood species in Southwestern Nigeria. International Journal of Forestry and Horticulture, 7(1), 20-29. |
| [34] | Jetter, J., Zhao, Y., Smith, K. R., Khan, B., Yelverton, T., DeCarlo, P., & Hays, M. (2012). Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves. Energy for Sustainable Development, 16(3), 358-368. |
| [35] | Egbewole Z. T, Rotowa O. J., Alo A. A., Ojo A. S., Oluwasanmi T. D., Enenche J. A. Oluwaseesin, M. B (2019). The Use of Forest Inventory in Estimating Illegally Felled Trees of Tectona grandis Plantation in Agudu Forest Reserve, Lafia, Nasarawa State, Nigeria", International Journal of Research Studies in Science, Engineering and Technology, vol. 6, no. 6, pp. 1-14. |
| [36] | Rotowa, O. J., Egbwole, Z. T., Adeagbo, A. A., & Blessing, O. M. (2019). Effect of indiscriminate charcoal production on Nigeria forest estate. Int. J. Environ. Protec. Policy, 7, 134-139. |
| [37] | Rotowa, O. J., Omole, A. O. and Egbewole Z. T (2017). Technical Assessment for Grades and Standards of Structural Timber in Nigeria. International Journal of Applied Research and Technology 6(8), 70-81. |
| [38] | Egbewole, Z. T., & Alao, J. S. (2013). Tree Growth Variables of Tectona grandis in Agudu Forest Reserve and Its Contributions to Rural Livelihood. PAT, 9(1), 59-72. |
| [39] | Jenkins, B. M., Baxter, L. L., Miles, T. R., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54(1-3), 17-46. |
| [40] | Demirbaş, A. (2001). Relationships between lignin content and heating value of biomass. Energy Conversion and Management, 42(2), 183-188. |
| [41] | Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Fuel, 84(7-8), 849-856. |
| [42] | Nhuchhen, D. R., & Salam, P. A. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel, 99, 55-63. |
APA Style
Egbewole, Z. T., Rotowa, O. J., Ibrahim, Y., Osagye, I. I., Kuje, E. D., et al. (2025). Comparative Evaluation of Properties and Energy Potential of Selected Fuelwood Species in Nasarawa State, Nigeria. International Journal of Sustainable and Green Energy, 14(4), 234-249. https://doi.org/10.11648/j.ijsge.20251404.11
ACS Style
Egbewole, Z. T.; Rotowa, O. J.; Ibrahim, Y.; Osagye, I. I.; Kuje, E. D., et al. Comparative Evaluation of Properties and Energy Potential of Selected Fuelwood Species in Nasarawa State, Nigeria. Int. J. Sustain. Green Energy 2025, 14(4), 234-249. doi: 10.11648/j.ijsge.20251404.11
@article{10.11648/j.ijsge.20251404.11,
author = {Zacchaeus Tunde Egbewole and Odunayo James Rotowa and Yohana Ibrahim and Ibrahim Ibrahim Osagye and Emmanuel Dauda Kuje and Caleb Obadiah and Theophilus Kolawole Rotowa and Idowu Abimbola Adegoke and Habdulakeem Biodun Bhadmus},
title = {Comparative Evaluation of Properties and Energy Potential of Selected Fuelwood Species in Nasarawa State, Nigeria
},
journal = {International Journal of Sustainable and Green Energy},
volume = {14},
number = {4},
pages = {234-249},
doi = {10.11648/j.ijsge.20251404.11},
url = {https://doi.org/10.11648/j.ijsge.20251404.11},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijsge.20251404.11},
abstract = {In many parts of Nigeria, wood remains a primary source of household and small-scale industrial energy. As fuelwood demand continues to grow, identifying species with high energy efficiency is increasingly important. This study evaluates eight commonly used wood species in Nasarawa State, Nigeria, to determine their suitability for fuelwood and charcoal production. Each species was assessed for calorific value, volatile matter, ash content, moisture content, wood density, and charcoal yield, using five replicates per species. Laboratory tests followed standard procedures, and the data were analyzed using descriptive statistics, ANOVA, and Duncan’s multiple range tests. Significant variation was observed across species, with Anogeissus leiocarpus, Khaya senegalensis, and Prosopis africana exhibiting superior energy profiles, including higher calorific values and lower ash and moisture contents. Boxplots and Duncan’s multiple range tests highlighted distinct groupings among the species. Correlation and multiple linear regression analyses revealed that moisture and ash contents had strong negative effects on calorific value, while density and charcoal yield positively influenced fuel quality. The results of regression analysis for calorific value versus volatile matter, ash content, moisture content, density, charcoal yield, species had R2 (Model Fit) of 0.8959, meaning 89.59% of the variation in calorific value is explained by the predictors. These findings support the hypothesis that fuelwood properties vary significantly by species and offer practical guidance for selecting efficient, clean-burning wood types. The results contribute to improved biomass energy use and support informed decisions for sustainable fuelwood utilization in sub-Saharan Africa.
},
year = {2025}
}
TY - JOUR T1 - Comparative Evaluation of Properties and Energy Potential of Selected Fuelwood Species in Nasarawa State, Nigeria AU - Zacchaeus Tunde Egbewole AU - Odunayo James Rotowa AU - Yohana Ibrahim AU - Ibrahim Ibrahim Osagye AU - Emmanuel Dauda Kuje AU - Caleb Obadiah AU - Theophilus Kolawole Rotowa AU - Idowu Abimbola Adegoke AU - Habdulakeem Biodun Bhadmus Y1 - 2025/10/27 PY - 2025 N1 - https://doi.org/10.11648/j.ijsge.20251404.11 DO - 10.11648/j.ijsge.20251404.11 T2 - International Journal of Sustainable and Green Energy JF - International Journal of Sustainable and Green Energy JO - International Journal of Sustainable and Green Energy SP - 234 EP - 249 PB - Science Publishing Group SN - 2575-1549 UR - https://doi.org/10.11648/j.ijsge.20251404.11 AB - In many parts of Nigeria, wood remains a primary source of household and small-scale industrial energy. As fuelwood demand continues to grow, identifying species with high energy efficiency is increasingly important. This study evaluates eight commonly used wood species in Nasarawa State, Nigeria, to determine their suitability for fuelwood and charcoal production. Each species was assessed for calorific value, volatile matter, ash content, moisture content, wood density, and charcoal yield, using five replicates per species. Laboratory tests followed standard procedures, and the data were analyzed using descriptive statistics, ANOVA, and Duncan’s multiple range tests. Significant variation was observed across species, with Anogeissus leiocarpus, Khaya senegalensis, and Prosopis africana exhibiting superior energy profiles, including higher calorific values and lower ash and moisture contents. Boxplots and Duncan’s multiple range tests highlighted distinct groupings among the species. Correlation and multiple linear regression analyses revealed that moisture and ash contents had strong negative effects on calorific value, while density and charcoal yield positively influenced fuel quality. The results of regression analysis for calorific value versus volatile matter, ash content, moisture content, density, charcoal yield, species had R2 (Model Fit) of 0.8959, meaning 89.59% of the variation in calorific value is explained by the predictors. These findings support the hypothesis that fuelwood properties vary significantly by species and offer practical guidance for selecting efficient, clean-burning wood types. The results contribute to improved biomass energy use and support informed decisions for sustainable fuelwood utilization in sub-Saharan Africa. VL - 14 IS - 4 ER -